OxTalks is Changing
During Michaelmas Term, OxTalks will be moving to a new platform (full details are available on the Staff Gateway).
For now, continue using the current page and event submission process (freeze period dates to be advised).
If you have any questions, please contact halo@digital.ox.ac.uk
High-density hard-core configurations on a triangular lattice
The high-density hard-core configuration model has attracted attention for quite a long time. The first rigorous results about the phase transition on a lattice with a nearest-neighbor exclusion where published by Dobrushin in 1968. In 1979, Baxter calculated the free energy and specified the critical point on a triangular lattice with a nearest-neighbor exclusion; in 1980 Andrews gave a rigorous proof of Baxter’s calculation with the help of Ramanujan’s identities. On a square lattice the nearest-neighbor exclusion critical point has been estimated from above and below in a series by a number of authors.
We analyze the hard-core model on a triangular lattice and identify the extreme Gibbs measures (pure phases) for high densities. Depending on arithmetic properties of the hard-core diameter $D$, the number of pure phases equals either $D^2$ or $2D^2$. A classification of possible cases can be given in terms of Eisenstein primes.
If the time allows, I will mention 3D analogs of some of these results.
This is a joint work with A Mazel and I Stuhl; cf. arXiv:1803.04041. No special knowledge will be assumed from the audience.
Date:
1 June 2018, 12:00
Venue:
Mathematical Institute, Woodstock Road OX2 6GG
Venue Details:
L5
Speaker:
Yuri Suhov (Penn State and Cambridge)
Organising department:
Department of Statistics
Organisers:
Christina Goldschmidt (Department of Statistics, University of Oxford),
James Martin (Department of Statistics, University of Oxford)
Part of:
Probability seminar
Booking required?:
Not required
Audience:
Public
Editors:
Christina Goldschmidt,
James Martin