OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
The major goal of Philip Cohen’s research is to understand how the signal transduction networks that regulate the innate immune system are activated during infection by bacteria and viruses, and to discover how they trigger the production of inflammatory mediators to combat these pathogens. Understanding these signalling networks is important, not just because it may lead to the development of improved drugs to fight infection, but also because failure to control the production of inflammatory mediators causes major global diseases, such as arthritis, asthma, colitis, fibrosis, lupus, psoriasis and sepsis. A further aim of his research is therefore to identify which components of these signalling networks are attractive drug targets for the treatment of these diseases. Another focus is to understand the interplay between protein phosphorylation and protein ubiquitylation in regulating the innate immune system, which we tackle by using a range of state-of-the-art techniques that include molecular, cellular and chemical biology, protein chemistry, mass spectrometry, CRISPR/Cas9 gene-editing technology and mouse genetics.