Self-organized patterning in complex biological fluids
Understanding how living systems dynamically self-organise across spatial and temporal scales is a fundamental problem in biology; from the study of embryo development to regulation of cellular physiology. In this talk, I will discuss how we can use mathematical modelling to uncover the role of microscale physical interactions in cellular self-organisation. I will illustrate this by presenting two seemingly unrelated problems: environmental-driven compartmentalisation of the intracellular space; and self-organisation during collective migration of multicellular communities. Our results reveal hidden connections between these two processes hinting at the general role that chemical regulation of physical interactions plays in controlling self-organisation across scales in living matter
Date:
7 February 2025, 11:00
Venue:
Mathematical Institute, Woodstock Road OX2 6GG
Venue Details:
L4
Speaker:
Giulia Celora (University of Oxford)
Organising department:
Mathematical Institute
Organiser contact email address:
jolliffe@maths.ox.ac.uk
Host:
Dr Ruth Baker (University of Oxford)
Part of:
Mathematical Biology and Ecology
Booking required?:
Not required
Audience:
Members of the University only
Editor:
Sara Jolliffe