During Michaelmas Term, OxTalks will be moving to a new platform (full details are available on the Staff Gateway).
For now, continue using the current page and event submission process (freeze period dates to be advised).
If you have any questions, please contact halo@digital.ox.ac.uk
A spanning tree of a finite connected graph G is a connected subgraph of G that touches every vertex and contains no cycles. In this talk we will consider uniformly drawn spanning trees of ``high-dimensional’‘ graphs, and show that, under appropriate rescaling, they converge in distribution as metric-measure spaces to Aldous’ Brownian CRT. This extends an earlier result of Peres and Revelle (2004) who previously showed a form of finite-dimensional convergence. Based on joint works with Asaf Nachmias and Matan Shalev.