OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
The long-term health of cells critically relies on selective protein degradation since damaged or aggregated proteins cause proteotoxic stress that can impair cell function and cause cell death. Many neuro-degenerative diseases, including Alzheimer’s, Parkinson’s, Huntington’s Disease, ALS and retinitis pigmentosa, are caused by the accumulation of protein aggregates. We recently discovered a novel mechanism that enables cells to avoid proteotoxic stress by stimulating the assembly of proteasomes, the multi-protein protease complex responsible for the regulated proteolysis of intracellular proteins. Significantly, this pathway is sensitive to diet, mitochondrial function, and oxidative stress. Furthermore, the activity of this pathway declines with age. Finally, polymorphisms in the central factor in this pathway, PI31, are associated factor with Alzheimer’s Disease. Our findings suggest that insufficient availability of proteasomes contributes to the aging process and chronic neuro-degenerative diseases.
Background reading:
Bader, M. Benjamin, S. Wapinski O., Smith, DM., Goldberg, AL., and Steller, H. (2011). A conserved F-box-regulatory complex controls proteasome activity in Drosophila. Cell. 145, 371-82.
Cho-Park, P., and Steller, H. (2013). Proteasome regulation by ADP-ribosylation. Cell, 153, 614–627.