OxTalks is Changing
OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
DeMoNs: Robust Self Supervised Depth and Motion Networks for All-Day Images
This is a hybrid event. Please find the Teams link in the abstract.
Short Bio:
Madhu Vankadari is a doctoral candidate at the University of Oxford’s Cyber Physical Systems group, under the supervision of Prof. Niki Trigoni and Prof. Andrew Markham. Prior to Oxford, he worked as a Machine Vision researcher at TCS Research in India. Madhu’s research revolves around using deep learning for SLAM-related challenges, such as improving depth estimation, camera pose accuracy, multi-motion scenarios, and visual place recognition. His work finds applications in robotics and computer vision, enhancing areas like autonomous navigation and augmented reality.
Teams link: teams.microsoft.com/l/meetup-join/19%3ameeting_MGQxM2Q3NmItMjM5MC00ODQyLTkyYTQtZDc2YmM1MDdiYjYy%40thread.v2/0?context=%7b%22Tid%22%3a%22cc95de1b-97f5-4f93-b4ba-fe68b852cf91%22%2c%22Oid%22%3a%22e44820d7-5edb-4030-9763-4c8cdc3aafd6%22%7d
Abstract:
Understanding the world in 3D irrespective of the time of the day is crucial for applications such as autonomous navigation, and augmented and virtual reality. Amongst all the sensors through which this can be achieved, cameras have been cheap and ubiquitous. However, cameras can only capture the 2D projection of the 3D world. Extracting 3D information from one or more 2D images has been a long-standing problem in Computer Vision. Recently, the success of deep learning has made it possible to do the aforementioned by training a network on a large corpus of training data with their ground truth. Self-supervised learning made it possible to train a system to achieve the same objective without using any ground truth. In this talk, I am going to present some of the latest advances in self-supervised learning including my own research in this direction.
Date:
30 May 2024, 17:30
Venue:
Wolfson College, Linton Road OX2 6UD
Venue Details:
Levett Room
Speaker:
Dr Madhu Vankadari (University of Oxford)
Organising department:
Wolfson College
Organisers:
Mr Csaba Botos (University of Oxford),
Dr. Yi Yin (Wolfson College, University of Oxford)
Organiser contact email address:
yi.yin@wrh.ox.ac.uk
Part of:
Oxford Cross-Disciplinary Machine Learning (OxfordXML) Research Cluster Seminar Series
Booking required?:
Not required
Cost:
Free
Audience:
Public
Editor:
Yi Yin