OxTalks will soon be transitioning to Oxford Events (full details are available on the Staff Gateway). A two-week publishing freeze is expected in early Hilary to allow all events to be migrated to the new platform. During this period, you will not be able to submit or edit events on OxTalks. The exact freeze dates will be confirmed as soon as possible.
If you have any questions, please contact halo@digital.ox.ac.uk
This talk will provide a survey of several papers on the theory and practice of experimental design. I will compare different objectives (estimator precision, outcomes of participants, informing policy choice to maximize average outcomes, and informing policy choice to maximize utilitarian welfare), and their implications for experimental design. I will consider heuristic algorithms, will prove approximate optimality results for some of these algorithms, and will discuss several empirical applications.
Papers:
This talk is based on the following papers:
Kasy, M. (2016). Why experimenters might not always want to randomize, and what they could do instead. Political Analysis, 24(3):324–338.
maxkasy.github.io/home/files/papers/experimentaldesign.pdf
Caria, S., Gordon, G., Kasy, M., Osman, S., Quinn, S., and Teytelboym, A. (2020). Job search assistance for refugees in Jordan: An adaptive field experiment. Work in progress.
Pre-registered at www.socialscienceregistry.org/trials/3870
Kasy, M. and Sautmann, A. (2020). Adaptive treatment assignment in experiments for policy choice. Working Paper. (R&R at Econometrica)
maxkasy.github.io/home/files/papers/adaptiveexperimentspolicy.pdf
Adaptive experiments for optimal taxation, building on
Kasy, M. (2019). Optimal taxation and insurance using machine learning – sufficient statistics and beyond. Journal of Public Economics.
maxkasy.github.io/home/files/papers/PolicyDecisions.pdf