During Michaelmas Term, OxTalks will be moving to a new platform (full details are available on the Staff Gateway).
For now, continue using the current page and event submission process (freeze period dates to be advised).
If you have any questions, please contact halo@digital.ox.ac.uk
An infinitely ramified point measure is a random point measure that can be written as the terminal value of a branching random walk of any length. This is the equivalent, in branching processes theory, to the notion of infinitely divisible random variables for real-valued random variables. In this talk, we show a connexion between infinitely ramified point measures and branching Lévy processes, a continuous-time particle system on the real line, in which particles move according to independent Lévy processes, and give birth to children in a Poisson fashion.