OxTalks will soon be transitioning to Oxford Events (full details are available on the Staff Gateway). A two-week publishing freeze is expected in early Hilary to allow all events to be migrated to the new platform. During this period, you will not be able to submit or edit events on OxTalks. The exact freeze dates will be confirmed as soon as possible.
If you have any questions, please contact halo@digital.ox.ac.uk
T\here is a very simple algorithm for the inference of posteriors for probability models on trees. This algorithm, known as “Belief Propagation” is widely used in coding theory, in machine learning, in evolutionary inference, among many other areas. The talk will be devoted to the analysis of Belief Propagation in some of the simplest probability models. We will highlight the interplay between Belief Propagation, linear estimators (statistics), the Kesten-Stigum bound (probability) and Replica Symmetry Breaking (statistical physics). We will show how the analysis of Belief Propagation allowed to proof phase transitions for phylogenetic reconstruction in evolutionary biology and develop optimal algorithms for inference of block models. Finally, we will discuss the computational complexity of this “simple” algorithm.