During Michaelmas Term, OxTalks will be moving to a new platform (full details are available on the Staff Gateway).
For now, continue using the current page and event submission process (freeze period dates to be advised).
If you have any questions, please contact halo@digital.ox.ac.uk
In this paper we study a class of weighted estimands, which we define as parameters that can be expressed as weighted averages of the underlying heterogeneous treatment effects. The popular ordinary least squares (OLS), two-stage least squares (2SLS), and two-way fixed effects (TWFE) estimands are all special cases within our framework. Our focus is on answering two questions concerning weighted estimands. First, under what conditions can they be interpreted as the average treatment effect for some (possibly latent) subpopulation? Second, when these conditions are satisfied, what is the upper bound on the size of that subpopulation, either in absolute terms or relative to a target population of interest? We argue that this upper bound provides a valuable diagnostic for empirical research. When a given weighted estimand corresponds to the average treatment effect for a small subset of the population of interest, we say its internal validity is low. Our paper develops practical tools to quantify the internal validity of weighted estimands.