OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
In this paper we study a class of weighted estimands, which we define as parameters that can be expressed as weighted averages of the underlying heterogeneous treatment effects. The popular ordinary least squares (OLS), two-stage least squares (2SLS), and two-way fixed effects (TWFE) estimands are all special cases within our framework. Our focus is on answering two questions concerning weighted estimands. First, under what conditions can they be interpreted as the average treatment effect for some (possibly latent) subpopulation? Second, when these conditions are satisfied, what is the upper bound on the size of that subpopulation, either in absolute terms or relative to a target population of interest? We argue that this upper bound provides a valuable diagnostic for empirical research. When a given weighted estimand corresponds to the average treatment effect for a small subset of the population of interest, we say its internal validity is low. Our paper develops practical tools to quantify the internal validity of weighted estimands.