OxTalks is Changing
On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
If you have any questions, please contact halo@digital.ox.ac.uk
Tensors in biological data and algebraic statistics
Tensors are higher dimensional analogues of matrices, used to record data with multiple changing variables. Interpreting tensor data requires finding multi-linear stucture that depends on the application or context. I will describe a tensor-based clustering method for multi-dimensional data. The multi-linear structure is encoded as algebraic constraints in a linear program. I apply the method to a collection of experiments measuring the response of genetically diverse breast cancer cell lines to an array of ligands. In the second part of the talk, I will discuss low-rank decompositions of tensors that arise in statistics, focusing on two graphical models with hidden variables. I describe how the implicit semi-algebraic description of the statistical models can be used to obtain a closed form expression for the maximum likelihood estimate.
Date:
21 February 2020, 14:00
Venue:
Mathematical Institute, Woodstock Road OX2 6GG
Venue Details:
L2
Speaker:
Dr Anna Seigal (University of Oxford)
Organising department:
Mathematical Institute
Organiser:
Sara Jolliffe (University of Oxford)
Organiser contact email address:
sara.jolliffe@maths.ox.ac.uk
Host:
Philip Maini (University of Oxford)
Part of:
Mathematical Biology and Ecology
Booking required?:
Not required
Audience:
Public
Editor:
Sara Jolliffe