OxTalks is Changing
OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
Tensors in biological data and algebraic statistics
Tensors are higher dimensional analogues of matrices, used to record data with multiple changing variables. Interpreting tensor data requires finding multi-linear stucture that depends on the application or context. I will describe a tensor-based clustering method for multi-dimensional data. The multi-linear structure is encoded as algebraic constraints in a linear program. I apply the method to a collection of experiments measuring the response of genetically diverse breast cancer cell lines to an array of ligands. In the second part of the talk, I will discuss low-rank decompositions of tensors that arise in statistics, focusing on two graphical models with hidden variables. I describe how the implicit semi-algebraic description of the statistical models can be used to obtain a closed form expression for the maximum likelihood estimate.
Date:
21 February 2020, 14:00
Venue:
Mathematical Institute, Woodstock Road OX2 6GG
Venue Details:
L2
Speaker:
Dr Anna Seigal (University of Oxford)
Organising department:
Mathematical Institute
Organiser:
Sara Jolliffe (University of Oxford)
Organiser contact email address:
sara.jolliffe@maths.ox.ac.uk
Host:
Philip Maini (University of Oxford)
Part of:
Mathematical Biology and Ecology
Booking required?:
Not required
Audience:
Public
Editor:
Sara Jolliffe