Programming and reprogramming brain cancer stem cells

Neural stem cells produce the neurons and glial cells that make up our nervous system. They can be expanded continuously in the laboratory, thereby providing an unlimited source of human cells for disease modelling and regenerative medicine.
Cells that have molecular hallmarks of neural stem cells drive human brain cancers, such as glioblastoma. A full understanding of the molecular and cellular events that control neural stem cell fate may therefore reveal new therapeutic strategies to treat this devastating disease.
We are exploiting the latest experimental tools of molecular and cellular biology to address the following questions: How do neural stem cells make the decision to make more copies of themselves (self-renew), or become specialised (differentiate)? Why do brain tumour stem cells display unconstrained self-renewal? Are those genes and pathways that initiate and maintain neural stem cell identity useful therapeutic targets for glioblastoma? Can we identify new drugs that can specifically block self-renewal of brain tumour stem cells?