On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
If you have any questions, please contact halo@digital.ox.ac.uk
Many natural and social phenomena involve individual agents coming together to create group dynamics, whether the agents are drivers in a traffic jam, cells in a developing tissue, or locusts in a swarm. Here I will focus on two examples of such emergent behavior in biology, specifically cell interactions during pattern formation in zebrafish skin and gametophyte development in ferns. Different modeling approaches provide complementary insights into these systems and face different challenges. For example, vertex-based models describe cell shape, while more efficient agent-based models treat cells as particles. Continuum models, which track the evolution of cell densities, are more amenable to analysis, but it is often difficult to relate their few parameters to specific cell interactions. In this talk, I will overview our models of cell behavior in biological patterns and discuss our ongoing work on quantitatively relating different types of models using topological data analysis and data-driven techniques.