During Michaelmas Term, OxTalks will be moving to a new platform (full details are available on the Staff Gateway).
For now, continue using the current page and event submission process (freeze period dates to be advised).
If you have any questions, please contact halo@digital.ox.ac.uk
A fundamental question in neuroscience is how neural populations learn to control flexible behaviors. A promising region for understanding the relationship between neural circuitry, population activity, and behavior is the cerebellum, whose evolutionarily-conserved circuitry is the basis of a critical role in motor learning guided by sensory errors. In the first part of this talk, I will present our recent work attempting to understand how cerebellar supervised learning can guide motor learning and adaptation in coordination with recurrent cortical dynamics. Furthermore, testing such theories of population-level learning in data requires methods that can infer how neural dynamics evolve over slow timescales. In the second part of the talk, I will present our recent development of low tensor rank recurrent neural networks, which can identify how latent neural dynamics are reshaped over learning from high-dimensional neural data.