On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
If you have any questions, please contact halo@digital.ox.ac.uk
In a joint work with Marcelo R. Hilário and Augusto Teixeira, we investigate the long-term behavior of a random walker evolving on top of the simple symmetric exclusion process (SSEP) at equilibrium. At each jump, the random walker is subject to a drift that depends on whether it is sitting on top of a particle or a hole. The asymptotic behavior is expected to depend on the density ρ in [0, 1] of the underlying SSEP.
Our first result is a law of large numbers (LLN) for the random walker for all densities ρ except for at most two values ρ− and ρ+ in [0, 1], where the speed (as a function of the density) possibly jumps from, or to, 0.
Second, we prove that, for any density corresponding to a non-zero speed regime, the fluctuations are diffusive and a Central Limit Theorem holds.
For the special case in which the density is 1/2 and the jump distribution on an empty site and on an occupied site are symmetric to each other, we prove a LLN with zero limiting speed.
Our main results extend to environments given by a family of independent simple symmetric random walks in equilibrium.