During Michaelmas Term, OxTalks will be moving to a new platform (full details are available on the Staff Gateway).
For now, continue using the current page and event submission process (freeze period dates to be advised).
If you have any questions, please contact halo@digital.ox.ac.uk
In a joint work with Marcelo R. Hilário and Augusto Teixeira, we investigate the long-term behavior of a random walker evolving on top of the simple symmetric exclusion process (SSEP) at equilibrium. At each jump, the random walker is subject to a drift that depends on whether it is sitting on top of a particle or a hole. The asymptotic behavior is expected to depend on the density ρ in [0, 1] of the underlying SSEP.
Our first result is a law of large numbers (LLN) for the random walker for all densities ρ except for at most two values ρ− and ρ+ in [0, 1], where the speed (as a function of the density) possibly jumps from, or to, 0.
Second, we prove that, for any density corresponding to a non-zero speed regime, the fluctuations are diffusive and a Central Limit Theorem holds.
For the special case in which the density is 1/2 and the jump distribution on an empty site and on an occupied site are symmetric to each other, we prove a LLN with zero limiting speed.
Our main results extend to environments given by a family of independent simple symmetric random walks in equilibrium.