OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
In a joint work with Marcelo R. Hilário and Augusto Teixeira, we investigate the long-term behavior of a random walker evolving on top of the simple symmetric exclusion process (SSEP) at equilibrium. At each jump, the random walker is subject to a drift that depends on whether it is sitting on top of a particle or a hole. The asymptotic behavior is expected to depend on the density ρ in [0, 1] of the underlying SSEP.
Our first result is a law of large numbers (LLN) for the random walker for all densities ρ except for at most two values ρ− and ρ+ in [0, 1], where the speed (as a function of the density) possibly jumps from, or to, 0.
Second, we prove that, for any density corresponding to a non-zero speed regime, the fluctuations are diffusive and a Central Limit Theorem holds.
For the special case in which the density is 1/2 and the jump distribution on an empty site and on an occupied site are symmetric to each other, we prove a LLN with zero limiting speed.
Our main results extend to environments given by a family of independent simple symmetric random walks in equilibrium.