On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
If you have any questions, please contact halo@digital.ox.ac.uk
Neurons use two fundamental coding schemes to convey information: rate coding (frequency of firing) and temporal coding (timing of firing). Although temporal coding has long been postulated to be important for encoding responses to stimuli or internal states, this hypothesis has been challenging to test. I will describe how the circadian clock acts via a novel clock output molecule, Wide Awake (WAKE), to tune biophysical properties of spikes to induce regular firing of specific clock neurons at night. Optogenetic experiments demonstrate that these changes in the pattern of firing, in the absence of changes in firing rate, directly alter sleep quality. Computational modeling shows that the rhythmic changes in ionic flux driven by WAKE are sufficient to account for both the dynamic modulation of spike morphology and the regularity of the spike train. Finally, I will show how temporal coding in these clock neurons is transformed to rate coding changes in downstream arousal neurons and demonstrate that temporal coding alone can induce synaptic plasticity that encodes persistent changes in clock-regulated sleep quality.