OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
Precisely-wired neuronal circuits process sensory information in a learning- and context-dependent manner in order to govern behavior. Simple whisker-dependent sensory decision-making tasks in mice reveal contributions of distinct cell types and brain regions participating in the conversion of sensory information into goal-directed licking motor output through reward-based learning. Task learning appears to be accompanied by target-specific routing of sensory information to specific downstream brain regions in a context-dependent manner. An important challenge for the future is to understand in further detail the brain-wide neural circuit mechanisms connecting cell type-specific processing of sensory information with the motor neurons ultimately responsible for goal-directed action initiation and motor control.