OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
Diagnosing the various types of blood cancer at an early stage correctly proves to be rather difficult even for trained experts. However, the disease subtypes may lead to very different clinical outcomes, some of which may be mild whereas others can lead to fatal conditions such as acute leukaemia. Thus, a timely and correct diagnosis is crucial for treating the patient appropriately. The histopathological assessment of bone marrow biopsies is a central part of the diagnostic process, but remains heavily constrained by the reliance on subjective, qualitative and poorly reproducible criteria. Computational methods leveraging recent advances in computer vision and deep learning have the potential to transform the current clinical gold standard into a reproducible and quantitative method. First, I will introduce the disease and its challenges with respect to image analysis. Then, I will describe our framework for characterising the cell population which drives the disease and its cellular microenvironment.