OxTalks will soon be transitioning to Oxford Events (full details are available on the Staff Gateway). A two-week publishing freeze is expected in early Hilary to allow all events to be migrated to the new platform. During this period, you will not be able to submit or edit events on OxTalks. The exact freeze dates will be confirmed as soon as possible.
If you have any questions, please contact halo@digital.ox.ac.uk
The mathematical analysis of global properties of polynomial dynamical systems can be very challenging (for example: the second part of Hilbert’s 16th problem about polynomial dynamical systems in 2D, or the analysis of chaotic dynamics in the Lorenz system).
On the other hand, any dynamical system with polynomial right-hand side can essentially be regarded as a model of a reaction network. Key properties of reaction systems are closely related to fundamental results about global stability in classical thermodynamics. For example, the Global Attractor Conjecture can be regarded as a finite dimensional version of Boltzmann’s H-theorem. We will discuss some of these connections, as well as the introduction of toric differential inclusions as a tool for proving the Global Attractor Conjecture.
We will also discuss some implications for the more general Persistence Conjecture (which says that solutions of weakly reversible systems cannot “go extinct”), as well as some applications to biochemical mechanisms that implement cellular homeostasis.