During Michaelmas Term, OxTalks will be moving to a new platform (full details are available on the Staff Gateway).
For now, continue using the current page and event submission process (freeze period dates to be advised).
If you have any questions, please contact halo@digital.ox.ac.uk
Beliefs and decisions are often based on confronting models with data. What is the largest “fake” correlation that a misspecified model can generate, even when it passes an elementary misspecification test? We study an “analyst” who fits a model, represented by a directed acyclic graph, to an objective (multivariate) Gaussian distribution. We characterize the maximal estimated pairwise correlation for generic Gaussian objective distributions, subject to the constraint that the estimated model preserves the marginal distribution of any individual variable. As the number of model variables grows, the estimated correlation can become arbitrarily close to one, regardless of the objective correlation
Link to paper: 297ff237-12bb-4686-9983-60da8eb1eb5d.filesusr.com/ugd/90366b_f660300e9e8a4b1fabd5e35c6c8a78f4.pdf
Please sign up for meetings here: docs.google.com/spreadsheets/d/1G0KdCfEkG4LYBuDSCLxyGRSEULv3_smLEEQMofG4X5U/edit#gid=0