OxTalks will soon be transitioning to Oxford Events (full details are available on the Staff Gateway). A two-week publishing freeze is expected in early Hilary to allow all events to be migrated to the new platform. During this period, you will not be able to submit or edit events on OxTalks. The exact freeze dates will be confirmed as soon as possible.
If you have any questions, please contact halo@digital.ox.ac.uk
Beliefs and decisions are often based on confronting models with data. What is the largest “fake” correlation that a misspecified model can generate, even when it passes an elementary misspecification test? We study an “analyst” who fits a model, represented by a directed acyclic graph, to an objective (multivariate) Gaussian distribution. We characterize the maximal estimated pairwise correlation for generic Gaussian objective distributions, subject to the constraint that the estimated model preserves the marginal distribution of any individual variable. As the number of model variables grows, the estimated correlation can become arbitrarily close to one, regardless of the objective correlation
Link to paper: 297ff237-12bb-4686-9983-60da8eb1eb5d.filesusr.com/ugd/90366b_f660300e9e8a4b1fabd5e35c6c8a78f4.pdf
Please sign up for meetings here: docs.google.com/spreadsheets/d/1G0KdCfEkG4LYBuDSCLxyGRSEULv3_smLEEQMofG4X5U/edit#gid=0