OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
Inherent fluctuations may play an important role in biological and chemical systems when the copy number of some chemical species is small. This talk will present the recent work on the stochastic modeling of reaction-diffusion processes in biochemical systems. First, I will introduce several stochastic models, which describe system features at different scales of interest. Then, model reduction and coarse-graining methods will be discussed to reduce model complexity. Next, I will show multiscale algorithms for stochastic simulation of reaction-diffusion processes that couple different modeling schemes for better efficiency of the simulation. The algorithms apply to the systems whose domain is partitioned into two regions with a few molecules and a large number of molecules.