On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
If you have any questions, please contact halo@digital.ox.ac.uk
Inherent fluctuations may play an important role in biological and chemical systems when the copy number of some chemical species is small. This talk will present the recent work on the stochastic modeling of reaction-diffusion processes in biochemical systems. First, I will introduce several stochastic models, which describe system features at different scales of interest. Then, model reduction and coarse-graining methods will be discussed to reduce model complexity. Next, I will show multiscale algorithms for stochastic simulation of reaction-diffusion processes that couple different modeling schemes for better efficiency of the simulation. The algorithms apply to the systems whose domain is partitioned into two regions with a few molecules and a large number of molecules.