OxTalks will soon be transitioning to Oxford Events (full details are available on the Staff Gateway). A two-week publishing freeze is expected to start before the end of Hilary Term to allow all future events to be migrated to the new platform. During this period, you will not be able to submit or edit events on OxTalks. The exact freeze dates will be confirmed on the Staff Gateway and via email to identified OxTalks users.
If you have any questions, please contact halo@digital.ox.ac.uk
We study a system of interacting urns where balls of different colour/type compete for their survival, and annihilate upon contact. We shall consider the finite setting, i.e. when the underlying graph is finite and connected. In this case it is known that coexistence is not possible between two types. However, for competition between three or more types, the possibility of coexistence depends on the underlying graph. We prove a conjecture stating that when the underlying graph is a cycle, then the competition between three or more types has a single survivor almost surely. As part of the proof we give a detailed description of an auto-annihilative process on the cycle, which can be perceived as an expression of the geometry of a Möbius strip in a discrete setting. (Joint work with Carolina Fransson.)