OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
Forced expression of defined transcription factors leads to the direct conversion of various cell types into induced neurons (iNs). Specifically, successful reprogramming of resident brain astrocytes in vitro as well as in vivo represents a great advantage for the generation of neurons and derived circuits. However, whether astrocytes from distinct brain regions might show a reprogramming specificity towards a unique iN type remains largely unknown. Here, we use direct reprogramming of thalamic astrocytes by Neurog2 to generate specific excitatory sensory-modality thalamocortical neurons. Moreover, we show that the origin, but not the environment of the astrocytes determines the fate of the iNs after direct reprogramming. Indeed, clonal analysis in the thalamus shows that astrocytes from the distinct thalamic nuclei are clonally related determining the specificity of the iNs generated from those astrocytes. We also found that the potential of the same transcription factor to reprogram nuclei-specific thalamic astrocytes into precise subsets of thalamocortical neurons depends on particular epigenetic modifications. In sum, our study provides novel insights into the mechanisms that control the specification of thalamic neurons and importantly those that are required for direct programming of sensory neurons. Generation of specific sensory brain circuits might be an approach for future rehabilitation strategies.