OxTalks will soon be transitioning to Oxford Events (full details are available on the Staff Gateway). A two-week publishing freeze is expected in early Hilary to allow all events to be migrated to the new platform. During this period, you will not be able to submit or edit events on OxTalks. The exact freeze dates will be confirmed as soon as possible.
If you have any questions, please contact halo@digital.ox.ac.uk
Seminars this term will be held remotely on Zoom. Links for joining will be sent out before each seminar. Please contact the host if you would like to set up a remote meeting with a speaker. If you have suggestions for future speakers, please contact Lauren (lauren.burgeno@dpag.ox.ac.uk), or Nima (nima.khalighinejad@psy.ox.ac.uk).
ABSTRACT:
Identification of distinct neuronal subpopulations has been essential for understanding brain function, but clinical applications struggle to access specific neurons in heterogeneously mingled populations. Recently, optogenetic protocols targeting neuronal subpopulations in the external globus pallidus (GPe) were shown to provide long-lasting therapeutic effects in dopamine depleted mice.
Here, we leverage underlying synaptic differences between Parvalbumin (PV) and Lim homeobox 6 (Lhx6) subpopulations to drive population-specific neuromodulation in the GPe, using brief bursts of electrical stimulation. We then apply these findings to strategically design a clinically appropriate deep brain stimulation (DBS) protocol, which we show induces long-lasting therapeutic effects that far exceed those of conventional DBS, extending for hours beyond stimulation. These results establish the feasibility of transforming knowledge about circuit architecture into quickly translatable therapeutic approaches.
Recent Publication related to this talk: www.science.org/doi/10.1126/science.abi7852