Machine learning interatomic potentials to dynamics-preserving coarse-graining strategies

Recent progress in the development of equivariant neural network architectures predominantly used for machine learning interatomic potentials (MLIPs) has opened new possibilities in the development of data-driven coarse-graining strategies. In this talk, I will first present our work on the development of learning potential energy surfaces and other physical quantities, namely the Hyperactive Learning framework1, a Bayesian active learning strategy for automatic efficient assembly of training data in MLIP and ACEfriction [2], a framework for equivariant model construction based on the Atomic Cluster Expansion (ACE) for learning of configuration-dependent friction tensors in the dynamic equations of molecule surface interactions and Dissipative Particle Dynamics (DPD). In the second part of my talk, I will provide an overview of our work on the simulation and analysis of Generalized Langevin Equations [3,4] as obtained from systematic coarse-graining of Hamiltonian Systems via a Mori-Zwanzig projection and present an outlook on our ongoing work on developing data-driven approaches for the construction of dynamics-preserving coarse-grained representations.
References:
[1] van der Oord, C., Sachs, M., Kovács, D.P., Ortner, C. and Csányi, G., 2023. Hyperactive learning for data-driven interatomic potentials. npj Computational Materials
[2] Sachs, M., Stark, W.G., Maurer, R.J. and Ortner, C., 2024. Equivariant Representation of Configuration-Dependent Friction Tensors in Langevin Heatbaths. to appear in Machine Learning: Science & Technology
[3] Leimkuhler, B. and Sachs, M., 2022. Efficient numerical algorithms for the generalized Langevin equation. SIAM Journal on Scientific Computing
[4] Leimkuhler, B. and Sachs, M., 2019. Ergodic properties of quasi-Markovian generalized Langevin equations with configuration-dependent noise and non-conservative force. In Stochastic Dynamics Out of Equilibrium: Institut Henri Poincaré, 2017