On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
If you have any questions, please contact halo@digital.ox.ac.uk
The morphogenesis of branched tissues has been a subject of long-standing interest and debate. Although much is known about the signaling pathways that control cell fate decisions, it remains unclear how macroscopic features of branched organs, including their size, network topology and spatial patterning, are encoded. Based on large-scale reconstructions of the mouse mammary gland and kidney, we show that statistical features of the developing branched epithelium can be explained quantitatively by a local self-organizing principle based on a branching and annihilating random walk (BARW). In this model, renewing tip-localized progenitors drive a serial process of ductal elongation and stochastic tip bifurcation that terminates when active tips encounter maturing ducts. Finally, based on reconstructions of the developing mouse salivary gland, we propose a generalisation of BARW model in which tips arrested through steric interaction with proximate ducts reactivate their branching programme as constraints become alleviated through the expansion of the underlying matrix. This inflationary branching-arresting random walk model presents a general paradigm for branching morphogenesis when the ductal epithelium grows cooperatively with the matrix into which it expands.