OxTalks will soon be transitioning to Oxford Events (full details are available on the Staff Gateway). A two-week publishing freeze is expected in early Hilary to allow all events to be migrated to the new platform. During this period, you will not be able to submit or edit events on OxTalks. The exact freeze dates will be confirmed as soon as possible.
If you have any questions, please contact halo@digital.ox.ac.uk
Computational neuroscience relies on gradient descent (GD) for training artificial neural network (ANN) models of the brain. The advantage of GD is that it is effective at learning difficult tasks. However, it produces ANNs that are a poor phenomenological fit to biology, making them less relevant as models of the brain. Specifically, it violates Dale’s law, by allowing synapses to change from excitatory to inhibitory and leads to synaptic weights that are not log-normally distributed, contradicting experimental data. Here, starting from first principles of optimisation theory, we present an alternative learning algorithm, exponentiated gradient (EG), that respects Dale’s Law and produces log-normal weights, without losing the power of learning with gradients. We also show that in biologically relevant settings EG outperforms GD, including learning from sparsely relevant signals and dealing with synaptic pruning. Altogether, our results show that EG is a superior learning algorithm for modelling the brain with ANNs.