On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
If you have any questions, please contact halo@digital.ox.ac.uk
Computational neuroscience relies on gradient descent (GD) for training artificial neural network (ANN) models of the brain. The advantage of GD is that it is effective at learning difficult tasks. However, it produces ANNs that are a poor phenomenological fit to biology, making them less relevant as models of the brain. Specifically, it violates Dale’s law, by allowing synapses to change from excitatory to inhibitory and leads to synaptic weights that are not log-normally distributed, contradicting experimental data. Here, starting from first principles of optimisation theory, we present an alternative learning algorithm, exponentiated gradient (EG), that respects Dale’s Law and produces log-normal weights, without losing the power of learning with gradients. We also show that in biologically relevant settings EG outperforms GD, including learning from sparsely relevant signals and dealing with synaptic pruning. Altogether, our results show that EG is a superior learning algorithm for modelling the brain with ANNs.