OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
Calibrating agent-based models (ABMs) is a crucial but challenging step in relating ABMs to the real world. Multiple factors contribute to this difficulty: the complexity of ABMs typically makes writing down or evaluating their likelihood functions extremely difficult and computationally expensive, prohibiting the direct application of likelihood-based inference techniques; ABMs are generally expensive to forward-simulate, posing a problem for calibration procedures that require repeated simulation from the model; and the inherently discrete nature of ABMs in many cases prevents the immediate use of gradient-assisted calibration methods as a means to improve the efficiency of simulation-based inference procedures.
In this talk, we will discuss how variational Bayesian inference schemes can be used in conjunction with powerful density estimation techniques from probabilistic machine learning to approximate parameter posterior distributions for ABMs. In particular, we will consider optimisation-based approaches to targeting posterior distributions in the general case of non-differentiable ABMs, before discussing how differentiable programming can be used to exploit gradients within the agent-based simulator to improve the efficiency of the optimisation procedure in many cases. Finally, we will demonstrate with experiments that such approaches can result in accurate inferences, and discuss avenues for future work. This talk will be based on papers co-authored with Arnau Quera-Bofarull (Oxford), Ayush Chopra (MIT), Prof. J. Doyne Farmer (Oxford), Prof. Anisoara Calinescu (Oxford), and Prof. Michael J. Wooldridge (Oxford).