OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
Identifying the differing ways in which political actors and groups express themselves is a key task in the study of legislatures, campaigning, and communication. A variety of computational tools exist to help find and describe these patterns, typically summarizing differences with weighted word lists representing either lexical frequencies or semantic fields. I identify two limits to the inferences that can be made based on this method: the ambiguity of the semantic value of words without wider context and an inability to detect differences outside of lexical semantics. I present a combination of text annotation and deep-learning feature attribution, a set of techniques for evaluating the relative importance of data inputs to the prediction of a neural network classifier, as an alternative means of identifying differentiating language usage in political texts. Results are evaluated with comparison to existing text-as-data tools on a dataset of US presidential campaign advertisements from Facebook between 2017 and 2020.