During Michaelmas Term, OxTalks will be moving to a new platform (full details are available on the Staff Gateway).
For now, continue using the current page and event submission process (freeze period dates to be advised).
If you have any questions, please contact halo@digital.ox.ac.uk
Our research explores linear biomolecular motors with a ‘build-to-understand’
approach. In contrast to studies of native motors, we assemble functional modules
to reveal design principles behind their robust, unidirectional motion despite
operating at energy levels only marginally above thermal noise. Our work follows
two main directions. First, we develop hybrid motor systems by integrating a
dynein-derived core with non-motor actin- or DNA-binding proteins. These hybrid
motors drive the sliding of actin filaments or DNA nanotubes, while DNA
nanotechnology permits precise spatial organisation of binding sites and
directional control. Second, employing the same motor engineering techniques, we
presented the first evidence that a biomolecular motor can employ two distinct
mechanisms to generate directional movement. Ultimately, our aim is to emulate
the complexity of biological systems with synthetic molecules, thereby providing
fresh insights into the design principles underpinning dynamic biological
processes.