OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
Cell-to-cell variability is often a primary source of variability in experimental data. Yet, it is common for mathematical analysis of biological systems to neglect biological variability by assuming that model parameters remain fixed between measurements. In this two-part talk, I present new mathematical and statistical tools to identify cell-to-cell variability from experimental data, based on mathematical models with random parameters. First, I identify variability in the internalisation of material by cells using approximate Bayesian computation and noisy flow cytometry measurements from several million cells. Second, I develop a computationally efficient method for inference and identifiability analysis of random parameter models based on an approximate moment-matched solution constructed through a multivariate Taylor expansion. Overall, I show how analysis of random parameter models can provide more precise parameter estimates and more accurate predictions with minimal additional computational cost compared to traditional modelling approaches.