On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
If you have any questions, please contact halo@digital.ox.ac.uk
Cell fate decision-making is responsible for development and homeostasis, and is dysregulated in disease. Despite great promise, we are yet to harness the high-resolution cell state information that is offered by single-cell genomics data to understand cell fate decision-making as it is controlled by gene regulatory networks. We describe how we leveraged joint dynamics + genomics measurements in single cells to develop a new framework for single-cell-informed Bayesian parameter inference of Ca2+ pathway dynamics in single cells. This work reveals a mapping from transcriptional state to dynamic cell fate. But no cell is an island: cell-internal gene regulatory dynamics act in concert with external signals to control cell fate. We developed a multiscale model to study the effects of cell-cell communication on gene regulatory network dynamics controlling cell fates in hematopoiesis. Specifically, we couple cell-internal ODE models with a cell signaling model defined by a Poisson process. We discovered a profound role for cell-cell communication in controlling the fates of single cells, and show how our results resolve a controversy in the literature regarding hematopoietic stem cell differentiation. Overall, we argue for the need to consider single-cell-resolved models to understand and predict the fates of cells.