OxTalks will soon be transitioning to Oxford Events (full details are available on the Staff Gateway). A two-week publishing freeze is expected in early Hilary to allow all events to be migrated to the new platform. During this period, you will not be able to submit or edit events on OxTalks. The exact freeze dates will be confirmed as soon as possible.
If you have any questions, please contact halo@digital.ox.ac.uk
The standard convex closed hull of a subset of $\mathbb{R}^d$ is defined as the intersection of all images,
under the action of a group of rigid motions, of a half-space containing the given set. We propose
a generalisation of this classical notion, that we call a $(K,\mathbb{H})$-hull, and which is obtained from the
above construction by replacing a half-space with some other convex closed subset $K$ of the
Euclidean space, and a group of rigid motions by a subset $\mathbb{H}$ of the group of invertible affine
transformations. The above construction encompasses and generalises several known models in convex
stochastic geometry and allows us to gather them under a single umbrella. The talk is based on recent
works by Kalbuchko, Marynych, Temesvari, Thäle (2019), Marynych, Molchanov (2022) and Kabluchko,
Marynych, Molchanov (2023+).