On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
If you have any questions, please contact halo@digital.ox.ac.uk
Motile cells inside living tissues often encounter junctions, where their path branches into several alternative directions of migration. We present a theoretical model of cellular polarization for cells migrating along one-dimensional lines, exhibiting diverse migration modes. When arriving at a symmetric Y-junction and extending protrusions along the different paths that emanate from the junction. The model predicts the spontaneous emergence of deterministic oscillations between competing protrusions, whereby the cellular polarization and growth alternates between the competing protrusions. These predicted oscillations are found experimentally for two different cell types, noncancerous endothelial and cancerous glioma cells, migrating on patterned network of thin adhesive lanes with junctions. Finally we present an analysis of the migration modes of multicellular “trains” along one-dimensional tracks.