On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
If you have any questions, please contact halo@digital.ox.ac.uk
By exploiting programmable, sequence-dependent base-pairing interactions it is possible to design and build three-dimensional DNA scaffolds, to attach molecular components to them with sub-nanometre precision – and then to make them move. I shall describe our work on autonomous, biomimetic molecular motors powered by chemical fuels, hybrid DNA-kinesin devices, motors that compute, nanostructure assembly, and the use of synthetic molecular machinery to control covalent chemical synthesis.