On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
If you have any questions, please contact halo@digital.ox.ac.uk
Animals learn to adapt to levels of uncertainty in the environment by monitoring errors and engaging control processes. Recently, deep networks have been proposed as theories of animal perception, cognition and learning, but there is theory that allows us to incorporate error monitoring or control into neural networks. Here, we asked whether it was possible to meta-train deep RL agents to adapt to the level of controllability of the environment. We found that this was only possible if we encouraged them to compute action prediction errors – error signals similar to those generated in mammalian medial PFC. APE-trained networks meta-learned policies in an “observe vs. bet” bandit task that closely resembled those of humans. We also show that biases in this error computation lead the network to display pathologies of control characteristic of psychological disorders, such as compulsivity and learned helplessness.