On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
If you have any questions, please contact halo@digital.ox.ac.uk
The affinity between statistical physics and machine learning has a long history. Theoretical physics often proceeds in terms of solvable synthetic models; I will describe the related line of work on solvable models of simple feed-forward neural networks. I will then discuss how this approach allows us to analyze uncertainty quantification in neural networks, a topic that gained urgency in the dawn of widely deployed artificial intelligence. I will conclude with what I perceive as important specific open questions in the field.