During Michaelmas Term, OxTalks will be moving to a new platform (full details are available on the Staff Gateway).
For now, continue using the current page and event submission process (freeze period dates to be advised).
If you have any questions, please contact halo@digital.ox.ac.uk
Epigenome-wide association studies are often performed using heterogeneous methylation samples, especially when there is no prior information as to which cell-types are disease associated. While much work has been done on estimating cell-type fractions and removing cell-type heterogeneity variation, relatively little work has been done on identifying cell-type specific variation in heterogeneous samples. In this talk I present a Bayesian model-based approach for making cell-type specific inferences in heterogeneous settings, by utilising a logistic transform to properly constrain parameters, and incorporating a prior knowledge of cell-type lineage via prior covariance structure. The approach was applied to the determination of sex-specific cell-type effects in methylation, where cell-type information was present as an independent verification of the results. The approach showed significant improvement in performance over previously used methods, particularly for detecting association in several rare cell-types. I outline current and future work on this problem, which leverages the flexibility of the Bayesian modelling approach by incorporating local methylation correlation and multiple data-types.