OxTalks will soon be transitioning to Oxford Events (full details are available on the Staff Gateway). A two-week publishing freeze is expected to start before the end of Hilary Term to allow all future events to be migrated to the new platform. During this period, you will not be able to submit or edit events on OxTalks. The exact freeze dates will be confirmed on the Staff Gateway and via email to identified OxTalks users.
If you have any questions, please contact halo@digital.ox.ac.uk
In this talk, we prove a scaling limit for the size (both in terms of vertices and edges) of the largest components of a critical random intersection graph in which each individual is assigned to each community with a uniform probability p, all independently of each other. We show that the order of magnitude of the largest component depends significantly on the asymptotic behaviour of the ratio between the number of individuals and communities, while the limit random variables to which component sizes converge after rescaling are the same as in the Erdos-Renyi Random Graph. We further discuss how this result relates to the known scaling limits of critical inhomogeneous random graphs.