OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
I will talk about algorithms (with unlimited computational power) which adaptively probe pairs of vertices of a graph to learn the presence or absence of edges and whose goal is to output a large clique. I will focus on the case of the random graph G(n,1/2), in which case the size of the largest clique is roughly 2\log(n). Our main result shows that if the number of pairs queried is linear in n and adaptivity is restricted to finitely many rounds, then the largest clique cannot be found; more precisely, no algorithm can find a clique larger than c\log(n) where c < 2 is an explicit constant. This is joint work with Uriel Feige, David Gamarnik, Joe Neeman, and Prasad Tetali.