OxTalks will soon be transitioning to Oxford Events (full details are available on the Staff Gateway). A two-week publishing freeze is expected to start before the end of Hilary Term to allow all future events to be migrated to the new platform. During this period, you will not be able to submit or edit events on OxTalks. The exact freeze dates will be confirmed on the Staff Gateway and via email to identified OxTalks users.
If you have any questions, please contact halo@digital.ox.ac.uk
I will talk about algorithms (with unlimited computational power) which adaptively probe pairs of vertices of a graph to learn the presence or absence of edges and whose goal is to output a large clique. I will focus on the case of the random graph G(n,1/2), in which case the size of the largest clique is roughly 2\log(n). Our main result shows that if the number of pairs queried is linear in n and adaptivity is restricted to finitely many rounds, then the largest clique cannot be found; more precisely, no algorithm can find a clique larger than c\log(n) where c < 2 is an explicit constant. This is joint work with Uriel Feige, David Gamarnik, Joe Neeman, and Prasad Tetali.