During Michaelmas Term, OxTalks will be moving to a new platform (full details are available on the Staff Gateway).
For now, continue using the current page and event submission process (freeze period dates to be advised).
If you have any questions, please contact halo@digital.ox.ac.uk
I will talk about algorithms (with unlimited computational power) which adaptively probe pairs of vertices of a graph to learn the presence or absence of edges and whose goal is to output a large clique. I will focus on the case of the random graph G(n,1/2), in which case the size of the largest clique is roughly 2\log(n). Our main result shows that if the number of pairs queried is linear in n and adaptivity is restricted to finitely many rounds, then the largest clique cannot be found; more precisely, no algorithm can find a clique larger than c\log(n) where c < 2 is an explicit constant. This is joint work with Uriel Feige, David Gamarnik, Joe Neeman, and Prasad Tetali.