OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
Data-driven modeling and deep learning present powerful tools that are opening up new paradigms and opportunities in the understanding, discovery, and design of soft and biological materials. I will describe our recent applications of deep representational learning to expose the sequence-function relationship within homologous protein families and to use these principles for the data-driven design and experimental testing of synthetic proteins with elevated function. I will then describe an approach based on latent space simulators to learn ultra-fast surrogate models of protein folding and biomolecular assembly by stacking three specialized deep learning networks to (i) encode a molecular system into a slow latent space, (ii) propagate dynamics in this latent space, and (iii) generatively decode a synthetic molecular trajectory.