On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
If you have any questions, please contact halo@digital.ox.ac.uk
When modeling real-world systems, suitable interaction rules governing their dynamics are often available. However, data is usually just accessible in aggregation, so valuable information about these dynamics is lost. In this work we tackle the problem of inferring the microstates of systems of which we know their model, but where there is limited information about them. More specifically, we take short, noisy, univariate time series aggregated non-linearly from deterministic chaotic dynamical systems, and we develop a method to infer initial conditions that reproduce the observed data. This method, the Microstate Initialization Procedure (MIP), consists of minimizing the mean-square error between the data and the model simulations by approaching a solution through a system’s strange attractor and then refining this solution using gradient descent techniques. We validate the MIP on the Lorenz and Mackey-Glass systems by making out-of-sample predictions that outperform their Lyapunov characteristic times. Finally, we analyze the predicting power of the MIP concerning the length of the observed time series, where we find a critical transition for the Mackey-Glass system.