OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
Neural recording technologies now enable simultaneous recording of population activity across many brain regions, motivating the development of data-driven models of communication between brain regions. However, existing models can struggle to disentangle the sources that influence recorded neural populations, leading to inaccurate portraits of inter-regional communication. In this talk, I will introduce Multi-Region Latent Factor Analysis via Dynamical Systems (MR-LFADS), a sequential variational autoencoder designed to disentangle inter-regional communication, inputs from unobserved regions, and local neural population dynamics. We show that MR-LFADS outperforms existing approaches at identifying communication across dozens of simulations of task-trained multi-region networks. When applied to large-scale electrophysiology, MR-LFADS predicts brain-wide effects of circuit perturbations that were held out during model fitting. These validations on synthetic and real neural data position MR-LFADS as a promising tool for discovering principles of brain-wide information processing.