OxTalks will soon move to the new Halo platform and will become 'Oxford Events.' There will be a need for an OxTalks freeze. This was previously planned for Friday 14th November – a new date will be shared as soon as it is available (full details will be available on the Staff Gateway).
In the meantime, the OxTalks site will remain active and events will continue to be published.
If staff have any questions about the Oxford Events launch, please contact halo@digital.ox.ac.uk
Determining the different conformational states of a protein and the transition paths between them is key to fully understanding the relationship between biomolecular structure and function. I will discuss how a neural network can learn a continuous conformational space representation from example structures produced by molecular dynamics simulations. I will then show how such representation, obtained via our software molearn (1), can be leveraged to predict putative protein transition states (2), or to generate conformations useful in the context of flexible protein-protein docking (3).
1. github.com/Degiacomi-Lab/molearn
2. V.K. Ramaswamy et al., Learning Protein Conformational Space with Convolutions and Latent Interpolations. Physical Review X (2021).
3. M.T. Degiacomi, Coupling Molecular Dynamics and Deep Learning to Mine Protein Conformational Space. Structure (2019)