On 28th November OxTalks will move to the new Halo platform and will become 'Oxford Events' (full details are available on the Staff Gateway).
There will be an OxTalks freeze beginning on Friday 14th November. This means you will need to publish any of your known events to OxTalks by then as there will be no facility to publish or edit events in that fortnight. During the freeze, all events will be migrated to the new Oxford Events site. It will still be possible to view events on OxTalks during this time.
If you have any questions, please contact halo@digital.ox.ac.uk
There has been a surge of interest in machine learning in the past few years, and deep learning techniques are more and more integrated into
the way we do quantitative science. A particularly exciting case for deep learning is molecular physics, where some of the “superpowers” of
machine learning can make a real difference in addressing hard and fundamental computational problems – on the other hand the rigorous
physical footing of these problems guides us in how to pose the learning problem and making the design decisions for the learning architecture.
In this lecture I will review some of our recent contributions in marrying deep learning with statistical mechanics, rare-event sampling
and quantum mechanics.