OxTalks will soon be transitioning to Oxford Events (full details are available on the Staff Gateway). A two-week publishing freeze is expected in early Hilary to allow all events to be migrated to the new platform. During this period, you will not be able to submit or edit events on OxTalks. The exact freeze dates will be confirmed as soon as possible.
If you have any questions, please contact halo@digital.ox.ac.uk
Image-based readouts of biology are information-rich and inexpensive. Yet historically, bespoke data collection methods and the intrinsically unstructured nature of image data have made these assays difficult to work with at scale. This presentation will discuss advances made at Recursion to industrialise the use of cellular imaging to decode biology and drive drug discovery. First, the use of deep learning allows the transformation of unstructured images into biologically meaningful representations, enabling a ‘map of biology’ relating genetic and chemical perturbations to scale drug discovery. Second, building such a map at whole-genome scale led to the discovery of a “proximity bias” globally confounding CRISPR-Cas9-based functional genomics screens. Finally, I will discuss how publicly-shared resources from Recursion, including the RxRx3 dataset and MolRec application, enable downstream research both on cellular images themselves and on deep learning-derived embeddings, making advanced image analysis more accessible to researchers worldwide.