OxTalks will soon be transitioning to Oxford Events (full details are available on the Staff Gateway). A two-week publishing freeze is expected in early Hilary to allow all events to be migrated to the new platform. During this period, you will not be able to submit or edit events on OxTalks. The exact freeze dates will be confirmed as soon as possible.
If you have any questions, please contact halo@digital.ox.ac.uk
The question can be formulated as a statistical hypothesis asserting that the distribution of the shapes of closed curves representing outlines of cell nuclei in a spatial domain is independent of the distribution of their locations. The key challenge in developing a procedure to test the hypothesis from a sample of spatially indexed curves (e.g. from an image) lies in how symmetries in the data are accounted for: shape of a curve is a property that is invariant to similarity transformations and reparameterization, and the shape space is thus an infinite-dimensional quotient space. Starting with a convenient geometry for the shape space developed over the last few years, I will discuss dependence measures and their estimates for spatial point processes with shape-valued marks, and demonstrate their use in testing for spatial independence of marks in a breast cancer application.