OxTalks will soon be transitioning to Oxford Events (full details are available on the Staff Gateway). A two-week publishing freeze is expected in early Hilary to allow all events to be migrated to the new platform. During this period, you will not be able to submit or edit events on OxTalks. The exact freeze dates will be confirmed as soon as possible.
If you have any questions, please contact halo@digital.ox.ac.uk
Critical lattice models are believed to converge to a free field in the scaling limit, at or above their critical dimension. This has been established for Ising and \Phi^4 models for d \geq 4. We describe a simple spin model from uniform spanning forests in Z^d whose critical dimension is 4 and prove that the scaling limit is the bi-Laplacian Gaussian field for d\geq 4. At dimension 4, there is a logarithmic correction for the spin-spin correlation and the bi-Laplacian Gaussian field is a log correlated field. The proof also improves the known mean field picture of LERW in d=4: we show that the renormalized escape probability (and arm events) of 4D LERW converge to some “continuum escaping probability”. Based on joint works with Greg Lawler and Xin Sun.