During Michaelmas Term, OxTalks will be moving to a new platform (full details are available on the Staff Gateway).
For now, continue using the current page and event submission process (freeze period dates to be advised).
If you have any questions, please contact halo@digital.ox.ac.uk
Clinical risk prediction models enable predictions of a person’s risk of an outcome (e.g. mortality) given their observed characteristics. It is often of interest to use risk predictions to inform whether a person should initiate a particular treatment. However, when standard clinical prediction models are developed in a population in which patients follow a mix of treatment strategies, they are unsuitable for informing treatment decisions. Counterfactual risk predictions aim to address this problem – they are estimates of what a person’s risk would be if they were to follow a particular treatment strategy, given their individual characteristics that are also predictive of the outcome.
Causal inference methods typically focus on estimating population average treatment effects. In this talk I will discuss how causal inference methods can be used for individual counterfactual risk prediction using longitudinal observational data on treatment use, patient characteristics and a time-to-event outcome. An essential step in development and reporting of prediction models is to validate their performance. I will discuss the challenges of this, and describe some new methods for assessing the predictive performance of counterfactual risk prediction.
In a motivating example, we are interested in counterfactual risk predictions for mortality in patients awaiting a liver transplant under the strategies of receiving or not receiving a transplant. I will illustrate the methods using data from the US Scientific Registry of Transplant Patients.